FASE 1 - Rilevazione tempi		
Tempo in lavoro	s/pezzo	25
Tempo in attesa	s/pezzo	25
Tempo ciclo pezzo	s/pezzo	50
Duty cycle	%	50

FASE 2 - Dati produzione		
Giornata lavorativa	h	8
Giorni lavorativi	gg	200
Pezzi prodotti al giorno	n	220
Pezzi teorici al giorno	n	576
Delta produzione reale-stimata	n	-356
Tempo di lavoro reale	h/giorno	3,1
Tempo in pausa tecnica	h/giorno	4,9

FASE 3 - Calcoli energetici		
Tempo attesa - Corrente assorbita	Α	9,4
Tempo attesa - Potenza assorbita	kW	4,23
Tempo attesa - Energia consumata per pezzo	kWh/pezzo	0,0294
Tempo pausa - Potenza assorbita	kW	4,23
Tempo pausa - Energia consumata per giorno	kWh/giorno	20,91

FASE 4 - Calcolo risparmio		
Costo kWh	€kWh	€0,20
Tempo attesa - Risparmio per pezzo	€/pezzo	0,0059
Tempo attesa - Risparmio per giorno	€/giorno	1,29
Tempo attesa - Risparmio per anno	€anno	258,39
Tempo pausa - Risparmio per giorno	€/giorno	4,18
Tempo pausa - Risparmio per anno	€anno	836,23
RISPARMIO TOTALE ANNUO	€anno	1.094,61

Dallo studio effettuato su applicazioni già realizzate abbiamo ricavato un grafico che può dare una stima del risparmio verificabile immediatamente nelle bollette.

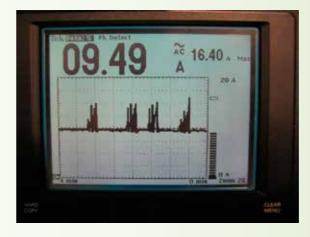
In queste tabelle esemplificative si posso notare, in base ai tempi di lavoro e ai tempi di attesa della macchina, i consumi presenti e i risparmi avuti con l'applicazione dell'inverter.

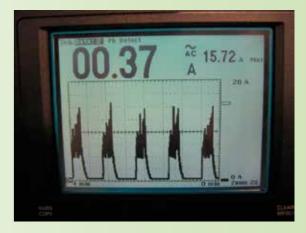
Elettromeccanica Battocchio s.r.l. - 36028 Rossano veneto (VI) - Via Enrico Fermi, 25 tel. 0424/848264 - fax 0424/540710 e-mail: info@ebattocchio.it

Macchina

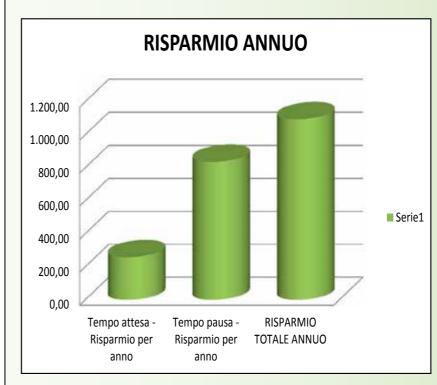
PIEGATURA

Centralina


POTENZA 9,2 kW



Armadio


Assorbimento pompa prima...

...assorbimento pompa dopo

L'utilizzo di un inverter su questa tipologia di applicazione è stata studiata al fine di far ottenere all'utilizzatore un notevole risparmio economico sul consumo di energia elettrica.

Ogni giorno vengono sprecati KWh per il funzionamento a vuoto del motore e surriscaldamento dell'olio.

Con la realizzazione di questa applicazione questi consumi verranno pressoché azzerati contribuendo ad un migliore rispetto ecologico, <u>senza</u> perdite di produzione.

ATTUANDO QUESTA TECNOLOGIA RENDERETE MIGLIORE IL LUOGO DI LAVORO RIDUCENDO NOTEVOLMENTE LA RUMOROSITÀ DELL'IMPIANTO.